

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAT 213

COURSE TITLE: LINEAR ALGEBRA II

DATE:

20/09/17

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: COMPULSORY (30 MKS)

a) Determine the standard matrix for a linear transformation $T: \mathbb{R}^3
ightarrow \mathbb{R}^2$ defined by

$$T(x, y, z) = (x - 2y, 2x + y)$$
 (5 mks)

- b) If u and v are non zero orthogonal vectors in an inner product space V then prove that $||u+v||^2 = ||u||^2 + ||v||^2$ (6 mks)
- c) Show that the function defined by $< u, v> = u_1 v_1 + 2 u_2 v_2$ is an inner product on \mathbb{R}^2 (6 mks)
- d) Let u and v be vectors in an inner product space V. If u=(1,-1,2) and

$$v = (0, 12, 0)$$
. Find

i)
$$||u||$$
 (3 mks)

ii)
$$||v||$$
 (3 mks)

iii)
$$d(u,v)$$
 (3 mks)

iv) The angle between
$$u$$
 and v (4 mks)

QUESTION 2 : (20 MKS)

a). Find the orthogonal projection of u and v in $\mathbb R$, given that

$$u = (4,2) \text{ and } v = (3,4)$$
 (4 mks)

b) Let w be a subspace of \mathbb{R}^5 spanned by $v_1=(1,2,3,-1,2)$ $v_2=(2,4,7,2,-1)$ Find a basis of the orthogonal complement w^\perp of w

(8 mks)

c) Define the terms: linear transformation ,orthogonal vectors and norm of a vector (8 mks)

QUESTION 3: (20 mks)

a) Prove that the set $S = \{v_1, v_2, v_3, v_4\} \in \mathbb{R}^4$ is a basis for \mathbb{R}^4 where

$$v_1 = (2,3,2,-2)$$
 , $v_2 = (1,0,0,1)$, $v_3 = (-1,0,2,1)$ and $v_4 = (-1,2,-1,1)$

(10 mks)

b) Apply Gram-Smchimdt orthonormalization process on a basis

 $B=\{(1,1,1,1), (1,2,4,5), (1,-31,-4,-2)\}$ for \mathbb{R}^3 to find the Orthonormal basis of the set B. (10 mks)

QUESTION 4: (20 MKS)

Given the square matrix

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4 \end{bmatrix}$$

Find the matrix P such that

 $B = P^{-1}AP$ where P is a diagonal matrix. Hence determine the matrix B.

(20 mks)

QUESTION 5: (20 mks)

a) Define the term inner product space

(4 mks)

b) Find the eigenvectors corresponding to eigenvalues of the matrix $A = \begin{bmatrix} 2 & 3 & -2 \\ 1 & 4 & -2 \\ 2 & 10 & -5 \end{bmatrix}$ (16 mks)