

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2017/2018 ACADEMIC YEAR** SECOND YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 213

COURSE TITLE: LINEAR ALGEBRA II

DATE:

10/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE: COMPULSORY (30 MARKS)

- (a) Using illustration define the norm of a vector X denoted by ||X|| (2mks)
- (b)Let x , y be \in C . Define a dot product as X.Y=||X|| ||Y||. State the characteristics of the dot product over the complex plane.(4mks)
- (c) If e_1 ----- e_m is an orthonormal list of vectors in V then for $a_1, \dots, a_m \in R$, show that

$$||a_1 e_1 + - - - - - - + a_m e_m||^2 = ||a||^2 + - - + ||a_m||^2$$
 (2mks)

- (d)Show that $(\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2})$ and $(\frac{1}{2}\frac{1}{2}\frac{-1}{2}\frac{-1}{2})$ is an orthonomal basis in F^4 .(4mks)
- (e)Define the eigen value and eigen vector of a square matrix (nxn) A.(4 mks)
- (d)Show that vector O is orthogonal to every vector. (4mks)
- (c)Let X,Y and $Z \in V$ where V is a vector space over F.

Show that
$$\langle X, Y+Z \rangle = \langle X, Y \rangle + \langle X, Z \rangle$$
. (5mks)

(b) Suppose e_1 ----- e_n is orthornomal basis of V and $v \in V$, Write V as a linear combination of e_i and state its norm (5mks)

QUESTION TWO(20 mks)

Given a system of linear equations below.

(a)
$$-2x_1 + x_2 - x_3 = -4$$

$$x_1 + 2x_2 + 3x_{3=13}$$

$$3x_1 + x_3 = -1$$

Use Gausian elimination to solve the systems of equations above .(10mks)

(b)Using pythagoras theorem show that $\|u+v\|^2 = \|u\|^2 + \|v\|^2$ where u and v are orthogonal vectors in the vector space V.(6mks)

(c)Let V be a vector space defined over k. Define the inner product of V.(4mks)

QUESTION THREE (20 marks)

- (a) State and prove the five properties of an inner product space. (10 mks)
- (b) Let A be defined by $\begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$

Calculate the eigenvectors and eigenvalues of A.(10MKS)

QUESTION FOUR (20 marks)

- (a) Show that the following lists of vectors are orthonormal (10mks)
- $\{e_1=(1,0,0) \ e_2=\{0,1,0\} \ e_3=(0,0,1).\}$

$$\{(\tfrac{1}{-\sqrt{3}}\,,\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}})\ (\tfrac{-1}{\sqrt{2}},\,\tfrac{1}{\sqrt{2}}\ ,0)\ (\tfrac{1}{\sqrt{6}}\,,\tfrac{1}{\sqrt{6}},\tfrac{-2}{\sqrt{6}})\}.$$

- (b) Let f be a linear functional on a normed space V. Show that the following are equivalent.
 - I. f is continous. (2mks)
 - II. f is continous at 0 (3mks)
- (c) Giving examples define a linear functional f over the vector space V .(5mks)

QUESTION FIVE (20 marks)

- (a) Let $T:U \longrightarrow V$ be a map from vector space U to vector space V. State two conditions that must be met by T for it to be a linear transformation. (2mks)
- (b)Define T:R3 R3 by describing the output of the function with the formular

$$T \left[\begin{array}{c|c} X_1 \\ X_2 \\ X_3 \end{array} \right] = \left[\begin{array}{ccc} 2X_1 & + & X_3 \\ & -4X^2 \end{array} \right]$$

Show that T is a linear transformation.(12mks)

- (c) Define the norm of a linear functional f in a normed space $V\,$.(3mks)
- (d)Let A = (2X2) be a matrix with eigenvalues and eigenvectors. Define a characteristic equation for the matrix. (3mks)