

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 213

COURSE TITLE: LINEAR ALGEBRA II

DATE: 30/07/18

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

(a) Let f(x)=x be a function over the vector space V of continuous real valued functions.

Define the inner product of the function f(x) over the interval (-1,1) as $\langle f, f \rangle = \int_{-1}^{1} (fx)^2 dx$

Show that $\langle f, f \rangle$ is an inner product.

(4mks)

(b) Let $X,Y \in R$, .Define a dot product of X and Y denoted by X. and Y and give its four properties. (5mks)

(c)Let X,Y and $Z \in V$ where V is a vector space over F.

Show that
$$< X, X + Y > = < X, X > + < X, Y >$$

(4 mks)

(d) Show that vector \bar{O} is orthogonal to every vector.

(3mks)

(e) Let $e_1 ext{......} e_m$ be an orthonormal list of vectors in V.

Show that
$$||ae_1 + \dots + ae_n||^{2} ||a||^2 + \dots + ||a||^2$$

(2mks

(f)Suppose A is a square matrix (nxn). Define eigenvector and eigenvalue over the matrix A.

(g)Define the norm of a linear functional f in a normed space V.

(3MKS)

(h) Given a system of linear equations below.

$$-2x_1 + x_2 + x_3 - 4$$

$$X_1 + 2x_2 + 3x_{3-13}$$

$$3x_1 + x_3 = -1$$

Use Gausian elimination to solve the systems of equations above.

(10mks)

(i) Using pythagoras theorem show that $II u+vII^2 = =IIu II^2 + II vII^2$ where u and v are orithogonal vectors in the vector space V. (5mks)

QUESTION TWO (20 MARKS)

(a).Let (V <.>) be an inner product space over R.Define a function $||V|| = \sqrt{\langle V,V \rangle}$

Show that $\|.\|$ is a norm on V.

(16mks)

(b) Let V be a vector space over the field F^n . Let e_1 --- e_m be orthonormal basis of V and v \in V. Express the vector v in terms of the orthonormal basis e_1 ---- e_m and state its norm.

(4mks)

QUESTION THREE (20 MARKS)

(a) Define orthonormal vectors

(2mks)

(b) Show that the following lists of vectors are orthonormal

(12mks)

 $\{e_1=(1,0,0)\ e_2=\{0,1,0\}\ e_3=(0,0,1).$

$$\left\{ \left((\frac{1}{-\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \right) \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}} \right) \right\}$$

(c)Define the normed dual of a normed vector space V giving an illustration

(4mks)

(d)Prove that everyorthonormal list of vectors is linearly independent

(3mks)

QUESTION FOUR (20 MARKS)

- (a) Let $T: U \to V$ be a map from vector space U to vector space V. State two conditions that must be met by T for it to be a linear transformation. (2mks)
- (b)Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by describing the output of the function with the formular

$$T\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \rightarrow \begin{bmatrix} 2X_1 & + & X_3 \\ & -4X_2 & \end{bmatrix}$$

Show that T is a linear transformation.

(12mks)

(c) Illustrate three examples of linear functionals

(6mks)

QUESTION FIVE (20 MARKS)

- (a)Let A = (2X2) be a matrix with eigenvalues and eigenvectors. Define a characteristic equation for the matrix. (4mks)
- (b)Let $A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$ be the matrix defined above.

Calculate the eigenvectors and eigenvalues of A.

(16mks)