

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SUPPLEMENTARY/SPECIAL EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 122

TITLE: ELEMENTARY APPLIED MATHEMATICS

DATE: 28/09/2017

TIME:

8 AM- 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS) (a) Two perpendicular lines L₁ and L₂ intersects at the point P (2, 4). If the gradient of L₁ is (3mks) 0.5, determine the equation of L₂ in the form y = mx + c(b) Calculate the radius and coordinates of the center of circle. (4mks) $2x^2 + 2y^2 - 8x + 5y + 10 = 0$ (c) Find the Polar coordinate representation for the rectangular point (-1, 1) (3mks) (d) Given two vectors $\langle 2, -1, 0 \rangle$ and $\langle 2, 4, 1 \rangle$, find their dot product of the two vectors (3mks) and hence state whether they are perpendicular or not. (e) A circle with centre (2, 3) passes through the point (2, 8). Determine the equation of the circle in the form $x^2 + y^2 + Dx + Ey + f = 0$ (3mks) (f) Define the term momentum, hence determine the momentum of a motorcycle of mass (4mks) 325kg moving at 140km/h (g) A model of a car moves round a circular path of radius 0.5m at 2 revolutions per second. Calculate; (2mks) (i) Period, T (2mks) (ii) Angular velocity, ω (h) Given that a = 2i - j + 3k and b = -i + 5j - 3k, find (3mks) (i) |2a - 3b|(3mks) (ii) the angle between a and b **QUESTION TWO (20 MARKS)** (a) Convert the point $(4, \frac{\pi}{3})$ from polar to Cartesian coordinates. (2 mks) (7mks) (b) Sketch the graph of $r = \cos 2\theta$ (c) Given the polar equation, $r = 1 + \cos \theta$; (6 mks) (i) Sketch its graph (ii) Find the area of the region bounded by the curve (5 mks) **OUESTION THREE (20 MARKS)** (a) Let the vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$. Show that $\mathbf{v} \times \mathbf{v} = 0$ (3mks) (b) Find the angle θ between the vectors \mathbf{v} and \mathbf{w} if $\mathbf{v} = <5,1,-2>$ and $\mathbf{w} = <4,-4,3>$ (c) Write the equation of the line L through the point $P_1 = (-3, 1, -4)$ and $P_2 = (4, 4, -6)$ in

(d) (i) Show that the points P(2, 1, 3), Q(1, -1, 2) and R(3, 2, 1) are not collinear (4mks)

(e) A line L passes through appoint (3, 7) and meets the y axis at y= 5. Find the equation of the line L₁passing through the point (-4, 5) and perpendicular to L. in the form

(ii) hence find the vector perpendicular to the plane

parametric form.

y = mx + C

(3mks)

(3mks)

(3mks)

QUESTION FOUR (20 MARKS)

- (a) The equation of a circle is given by $r^2 + 6r \cos \theta + 4r \sin \theta = 12$
 - (i) Write the equation in rectangular coordinates
 (ii) Write the equation in rectangular coordinates
 (4mks)
- (ii) Hence find the center and radius of the circle. (4mks) (b) Find the equation of a circle passing through the points (2, 1), (0, 5) and (-1,2) in the form y = mx + C
- (c) The diameter of a circle meets the circumference of the circle at the points (4, 8) and (6, 16). Find;
 - (i) The equation of the circle (3mks)
 - (ii) Determine whether the point P(5, 20) lies inside, on or outside the circle. (3mks)

QUESTION FIVE (20 MARKS)

- (a) Define moment of force (1mk)
- (b) State Newton's second law of motion and hence derive the relationship
 Force = mass x acceleration (5mks)
- (c) Show that if a particle has an initial velocity u, final velocity v and moves with an acceleration a, then its displacement, s at any time t is given by $s = ut + \frac{1}{2}at^2$ (3mks)
- (d) A car that has been travelling at 60m/s is brought to a stop at constant deceleration, 180m from where the brakes have been applied. How far has the car moved when its velocity has been reduced by 10m/s?

 (3mks)
- (e) Determine the value of α for which the vectors $\mathbf{a} = 4\alpha \mathbf{i} + \alpha \mathbf{j} \mathbf{k}$ and $\mathbf{b} = \alpha \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ are orthogonal (3mks)
- (f) Determine if the pointe P(4, -1, 3), Q(-1, 9, 8) and R(2, 3, 5) are collinear. (5mks)