

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR SECONDYEAR FIRST SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 212

COURSE TITLE: LINEAR ALGEBRA

DATE:

18/09/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MKS)

- (a) (i)Define subspace of vector spaces and a basis of a vector space
 - (ii) Show that $V_4\equiv$ the set consisting of all real valued continuous functions defined on

(2mks)

- (b) Let W= $\{(x_1, x_1 + x_3, x_3): x_1 \text{ and } x_3 \text{ are real numbers}\}$. Show that W is a subspace of R^3 . (4mks)
- (c) Solve the system below using Gaussian Elimination with back-substitution. (4mks)

$$x-2y+3z = 9$$

the entire real line is a vector space.

$$-x+3y = -4$$

$$2x-5y+5z=17$$

- (d) (i) Show that the set $S = \{(1,1), (1,-1)\}$ is a basis for R^2 (4mks)
 - (ii) Determine whether the set of vectors below is linearly independent or dependent (5mks)

$$S = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

- (e) (i) Find the kernel of the linear transformation T: $R^2 \to R^3$ represented by T $(x_1, x_2) = (x_1 2x_2, 0, -x_1)$. (3mks)
 - (ii) Show that the linear transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$ represented by the matrix

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Has the property that it rotates every vector in \mathbb{R}^2 counter clockwise about the origin through angle θ (3 mks)

QUESTION TWO (30 MKS)

(a) Use Gauss - Jordan elimination to solve the system

$$x+2y-2z = -3$$

 $w + 2x-y = 2$
 $2w + 4x + y - 3z = -2$
 $w - 4x - 7y - z = -19$ (6mks)

(b) Write the vector w = (1, 1, 1) as a linear combination of vectors in the set S, where $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ (7 mks)

2(c) Proof that $S=v_1, \ldots, v_n$ form a basis of vector space V if and only if every $v \in V$ can be written uniquely as $v=\alpha_1 \ v_1+\alpha_2 \ v_2+\ldots+\alpha_n \ v_n$: the coefficients $\alpha_1, \alpha_2, \ldots, \alpha_n$ are uniquely determine by the vector v. (4mks)

2(d) Proof that if W_1 and W_2 are subspaces of V then so is $W_1 \cap W_2$. (3 mks)

QUESTION THREE (30 MKS)

(a) Let U and W be subspace of a vector space V. Show that:

		(2mks)
(i)	U + V is a subspace of V	(3mks)

$$= span (U, W).$$

$$W + W = W$$
(2 mks)

(b) Solve the system of linear equation below

$$x - y + 3z = 0$$

 $2x + y + 3z = 0$ (5mks)

(c) Proof that:

(iv)

QUESTION FOUR (30 MKS)

- (a) Determine whether the set of vectors S in \mathbb{R}^3 is linearly independent or linearly dependent. Where, S = {(1,2,3), (0,1,2), (-2,0,1)} (6 mks)
- (b) Find the inverse of the matrix below

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{pmatrix}$$

- (c) Proof that if $S = \{v_1, v_2, \dots, v_k\}$ is a set of vectors in a vector space V, then span(S) is a subspace of V. (4 mks)
- (d) Proof that a set $S = \{v_1, v_2, \dots, v_n\}$, $n \ge 2$, is linearly dependent if and only if at least one of the vectors v_j can be written as a linear combination of the other vectors in S. (4mks)

QUESTION FIVE (30 MKS)

(a) Solve the system

(7 mks)

$$u - v + 2w = 4$$

$$u + w = 6$$

$$2u + 3v + 5w = 4$$

$$3u + 2v - w = 1$$

- (b) Proof that if the vectors v_1, v_2, \ldots, v_n , w span V and that w is a linear combination of v_1, v_2, \ldots, v_n , then v_1, v_2, \ldots, v_n , span V. (6mks)
- (c) Find the kernel of the linear transformation, T: $R^3 \rightarrow R^2$ defined by T(x) = A(x), where

$$A = \begin{array}{cccc} 1 & -1 & -2 \\ -1 & 2 & 3 \end{array}$$