

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

SECONDYEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAT 210

COURSE TITLE: CALCULUS II

DATE:

8/10/18

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question ONE (30 Marks)

a. Evaluate the integral
$$\int \left(3e^x + \frac{2}{1+x^2}\right) dx$$
 (3 Marks)

b. Find
$$\int \frac{4x^2 + 13x - 9}{x^3 + 2x^2 - 3x} dx$$
 (5 Marks)

c. Evaluate
$$\int (1 - \cos^3 3x) \sin 3x dx$$
 (3 Marks)

- d. The region enclosed by the curves y = x and $y = x^2$ is rotated about the x axis. Find the volume of the resulting solid (5 Marks)
- e. Evaluate $\iint (x 8y^2) dy dx$ for the region $\{(x, y): 1 \le x \le 2, 0 \le y \le 2\}$ (5 Marks)

f. Evaluate
$$\int x^2 \cos x dx$$
 (4 Marks)

g. Find the Riemann sum for $f(x) = x^2 + 1$ taking the sample points to be the right endpoints and a = 0, b = 2 and n = 5(5 Marks)

Question TWO (20 Marks)

a) Evaluate

(i)
$$\int \frac{6x^2 + 7x - 25}{(x - 3)(x^2 + x - 2)} dx$$
 (7 mks)
(ii)
$$\int \frac{-(9x^2 + 4x + 4)}{x^2(x^2 - 4)} dx$$
 (7 mks)

(ii)
$$\int \frac{-(9x^2+4x+4)}{x^2(x^2-4)} dx$$
 (7 mks)

b) Find
$$\frac{d}{dx} \int_{x^2}^1 \frac{1}{\sqrt{t^4 + 4}} dt$$
 (6 Marks)

Question THREE (20 Marks)

- a. Define $I_n = \int tan^n x dx$. Show that $I_n = \frac{tan^{n-1}x}{n-1} I_{n-2}$. Hence evaluate $\int tan^7 x dx$ (10 Marks)
- b. Find the value of c that satisfies the conclusion of the integral Mean Value Theorem in the function below (3 Marks)

$$f(x) = x^2, 0 \le x \le 1$$

- c. The arc of the parabola $y = x^2$ from (1,1) to (4,2) is rotated about the x axis. Find the area of the resulting surface (4 Marks)
- d. Find the arc length of the curve $y = e^x$ from x = 0 to x = 2(3 Marks)

Question FOUR (20 Marks)

a. Find the average value of the function $f(x) = x^2 + 3x - 1$ on the interval [-1,3](3 Marks)

b. Evaluate the following integrals

i.
$$\int_0^2 \sqrt{x^2 + 4} \, dx$$
 (4 Marks)

ii.
$$\int \frac{dx}{\sqrt{9-x^2}}$$
 (3 Marks)

i.
$$\int_0^2 \sqrt{x^2 + 4} \, dx$$
 (4 Marks)
ii.
$$\int \frac{dx}{\sqrt{9-x^2}}$$
 (3 Marks)
iii.
$$\int \frac{x dx}{\sqrt{1-9x^2}}$$
 (4 Marks)

iv.
$$\int_0^1 \int_1^x e^y dy dx$$
 (2 Marks)

v. Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x and bounded on the sides by x = 0 and x = 1(4 Marks)

Question FIVE (20 Marks)

a. Evaluate the integrals

i.
$$\int t^2 e^t dt$$
 (4 Marks)

ii.
$$\int tan^3x sec^2x dx$$
 (4 Marks)

iii.
$$\int \sin^2 x \cos^2 x dx$$
 (4 Marks)

b. Determine the position function
$$s(t)$$
 of an object if its velocity is $v(t) = 3 - 12t$ and the initial position is $s(0) = 3$ (3 marks)

c. Use partial fractions to evaluate
$$\int \frac{x^4}{x^2 - 1} dx$$
 (5 marks)