

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FIRST YEAR THIRD SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAT 121

COURSE TITLE: CALCULUS I

DATE:

13/09/17

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Obtain the derivative of the function for $f(x) = x^3 2x^2 + 4x$ using the 1st principles. (4 mks)
- b) Find the equation of the line that is tangent to the curve $2x^2 + xy - y^2 = 10$ at the point (-2,3) (4 mks)
- c) Determine the derivatives of the following

$$(i) y = 2x^2 ln3x (3 mks)$$

(ii)
$$y = \left(\sqrt{t} - 4t\right)^3 \tag{4 mks}$$

(iii)
$$y = \frac{e^{-3x^2}}{1 - \cos 3x}$$
 (4 mks)

- d) Given the function $y = x^3 3x^2 + 2$
 - Find all the stationary points on the curve (i) (6 mks)
 - (ii) State the nature of the stationary points (3 mks)
- e) State the Rolle's theorem (2 mks)

QUESTION TWO (20 MARKS)

- a) Evaluate the limits
 - $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$ (3 mks)
 - (3 mks)
 - $\lim_{x \to 2} \frac{x^2 4}{x 2}$ $\lim_{x \to 0} \frac{\tan \beta x}{\sin \alpha x}$ (5 mks)
- b) Given that $x = 3\cos\theta$ and $y = 3\sin\theta$ where θ is a constant find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{2}$ (4 mks)
- c) Joseph has 100 M of fencing wire which he can put against an already existing fence to form a rectangular pen to enclose his cows. What is the maximum area can he enclose (5 mks)

QUESTION THREE (20 MARKS)

- Determine the equation of the normal line to the graph of $xy^2 + 7x + 4xy - 4 = 0$ at (1,-1)(4 mks)
- b) Find $\frac{dy}{dx}$ given that $y = \cos x^3$ (4 mks)
- c) The distance S metres moved by a body in t seconds is given by $S = 2t^3 13t^2 + 13t^2 +$ 24t - 12. Find
 - The velocity when t = 3 seconds (i) (4 mks)

- (ii) The time when the body is instantaneously at rest (4 mks)
- The time when acceleration is $10 m/s^2$ (iii) (4 mks)

QUESTION FOUR (20 MARKS)

- a) Find $\frac{dy}{dx}$ given that $y = \cot^3(2x^2 3x + 4)$ b) Determine whether the limit of each of the following functions exist at (4 mks)
- indicated point $f(x) = \frac{e^{2x}}{x^2 1}$ at x = 1(4 mks)
- c) Determine whether the following function is continuous at x = 2

$$f(x) = \begin{cases} x^2 + 1 & x < 2\\ 5 & x = 2\\ -x + 5 & x > 2 \end{cases}$$
 (5 mks
d) Sketch the curve $y = x^3 - 6x^2 + 9x + 17$ (7 mks)

(7 mks)

QUESTION FIVE (20 MARKS)

- a) Find y^{II} given that $y = \ln(2x^2 x + 3)$ (5 mks)
- b) If $y = \frac{\sin x}{x^2}$ prove that $x^2y^{11} + 4xy^1 + (x^2 + 2)y = 0$ (5 mks)
- c) A piece of wire 8M long is cut into 2 parts. If the parts are bent to form a square and a circle respectively. Find the radius of the circle if the sum of their areas is minimum (5 mks)
- d) Show that the slope of the line tangent to the curve $sinxy = x^2 cosy$ at $\left(2,\frac{\pi}{2}\right)$ is $\frac{\pi}{4}$ (5 mks)