

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 121

COURSE TITLE:

CALCULUS I

DATE:

05/10/18

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Given that $y = 3x^2 2x 7$ find $\frac{dy}{dx}$ using the first principle. (4mks)
- b) Determine the equation of the normal to the curve $y = x^2 + 4$ at the point y = 20 in the (5 mks) form y = mx + c
- c) Find the gradient of the curve $y^2 + 4xy + x^2 = 6$ at the point (1, 1)(4 mks)
- d) Differentiate the following functions with respect to x. (6 mks)
 - $v = \sec x$
 - ii. $y = e^{2x} \ln x$
 - iii. $y = (x^3 4x)^{10}$
- e) Evaluate $\lim_{x\to 1} \frac{x^3 6x^2 + 11x 6}{x^2 6x + 5}$ (3 mks)
- f) Find the turning points of the graph of the function $y = \frac{1}{3}x^3 \frac{5}{2}x^2 + 6x$ and determine (8 mks) the nature of the points.

QUESTION TWO (20 MARKS)

(a) Evaluate the following limits

(i)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 4x}$$
 (3 mks)

(i)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 4x}$$
 (3 mks)
(ii) $\lim_{x \to 1} \frac{\sqrt{x} - 2}{x - 1}$ (3 mks)

(b) Determine whether the following functions are continuous or notat the indicated points

(i)
$$f(x) = \frac{x^2 - 4}{x^3 + 1}$$
 at $x = 1$ (4 mks)

(ii)
$$f(x) = \frac{x^3 + 1}{x^2 - 9}$$
 at $x = 3$ (5 mks)

(iii)
$$h(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & x \neq 1 \\ 3 & x = 1 \end{cases}$$
 at $x = 1$ (5 mks)

QUESTION THREE (20 MARKS)

a) Find $\frac{dy}{dx}$ given

i.
$$y = \sqrt[3]{x}$$
 (2mks)

ii.
$$y = \ln \sqrt{x^2 + 1}$$
 (3 mks)

b) Find the value of C satisfying the conclusion of Rolle's theorem for

$$f(x) = x^3 - 3x^2 + 2x + 2$$
in the interval [0, 1] (6 mks)

c) Using the first principle, find $\frac{dy}{dx}$ given that $y = \sin x$ (5mks)

d) If
$$y = e^{2x}$$
, show that $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ (4 mks)

QUESTION FOUR (20 MARKS)

a) Determine the equation of the normal line to the graph of $\frac{1}{2} + \frac{7}{2} + \frac{4}{2} = 0$ at $\frac{1}{2} + \frac{1}{2} = 0$

$$xy^2 + 7x + 4xy - 4 = 0$$
 at (1,-1) (4 mks)

b) Find $\frac{dy}{dx}$ given that $y = \cos x^3$ (4 mks)

c) The distance S metres moved by a body in t seconds is given by $S = 23 - 13t^2 + 20t - 12$. Find

(i) The velocity when
$$t = 2$$
 seconds (4 mks)

(iii) The time when acceleration is $7 m/s^2$ (4 mks)

QUESTION FIVE (20 MARKS)

(a) Define the term stationary points. (1 mk)

(b) Given the function $y = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{9}{2}x^2 - 18x$ find

(i) all the stationary points on the curve (9 mks)

(ii) state the nature of all the stationary points (6 mks)

(c) Sketch the curve of the function $y = x^2 - 6x + 8$ (4 mks)