

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 121

COURSE TITLE:

CALCULUS I

DATE:

16/01/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define a limit of a function and hence evaluate; $\lim_{x\to 1} \frac{\sqrt{(x^3-1)(x-1)}}{x-1}$ (5 mks)
- b) Find the derivative of the function $y = x^2 + 2x 4$ using the first principle.

(3 mks)

- (4 mks) c) If $f(x) = \ln(x^2 + x)$, find f''(2)
- d) Using any suitable method, find the derivative of the function $y = \cos^2 x 1$ (3 mks)
- e) Determine the gradient of the curve $2x^2 + xy + y^3 = 0$ at the point (1, 2).(4 mks)
- f) The distance of an object at any given time is given by $S = 5t^2 t^3$. Calculate the time when acceleration is $-14ms^{-1}$.
- g) (i) State Rolle's theorem and hence find the value of x_0 prescribed in the theorem for $f(x) = x^2 - 5x + 4$ on the interval $1 \le x_0 \le 4$
 - (ii) Let $f(x) = x^2 x$. Does Rolle's Theorem guarantee the existence of some C in (1, 2) with f'(C) = 0. Give a reason for your answer. (2 mks)

QUESTION TWO (20 MARKS)

- (2 mks)a) Define the term continuity of a function
- b) Determine if the functions given below are continuous at the indicated points

(i)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$
 at $x = 1$ (3 mks)

(i)
$$f(x) =\begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$
 at $x = 1$ (3 mks)
(ii) $g(x) =\begin{cases} x + 4 & x < 2 \\ 3 & x = 2 \\ x^2 + 2 & x > 2 \end{cases}$ (5 mks)

- c) Using the definition of limits, show that $\lim_{x\to -\frac{3}{2}} (1-4x) = 7$ (4 mks)
- d) Evaluate the limits

(i)
$$\lim_{x \to 1} \frac{x^4 + x^3 - x - 1}{x - 1}$$
 (3 mks)

(i)
$$\lim_{x \to 1} \frac{x^4 + x^3 - x - 1}{x - 1}$$
 (3 mks)
(ii) $\lim_{x \to 1^-} \frac{(x - 1)(x + 1)}{|x - 1|}$ (3 mks)

QUESTION THREE (20 MARKS)

a) Evaluate the derivatives of the following functions

(i)
$$y = (x^3 + x)^9$$
 (2 mks)

(ii)
$$y = \frac{x-1}{x^2+x}$$
 (2 mks)
(iii) $y = \ln \frac{1}{\sqrt{x^2+2x}}$ (3 mks)

(iii)
$$y = \ln \frac{1}{\sqrt{x^2 + 2x}}$$
 (3 mks)

- b) Given that $y = e^{2x} \sin x$ show that y'' 4y' + 5y = 0(4 mks)
- c) Find derivative of the function $y = \cos x$, using the first principle (5mks)
- d) Determine the value of $\frac{d^2y}{dx^2}$ if $y = \frac{1}{x^2+1}$. Simplify your answer. (4 mks)

OUESTION FOUR (20 MARKS)

a)	a) Definethe term a stationary point			
b) Given that $y = 0.25x^4 + 0.5x^3 + 0.25x^2 + 4$, from the equation				
	i.	Identify all the stationary points	(6 mks)	
	ii.	Determine the nature of the stationary points	(6 mks)	
	iii.	Sketch the curve	(3 mks)	
c)	Sketc	h the curve of another curve with the equation $y = x^3 + 1$.	(3 mks)	

QUESTION FIVE (20 MARKS)

a) The position of a stone projected vertically upwards at any time is given by $S = 2t - t^3$. Find;

	i.	The time at which the object has zero velocity	(3 mks)
	ii.	The max height of the stone from the ground.	(2 mks)
	iii.	Acceleration of the stone at $t = 3$	(2 mks)
	iv.	The height above the ground from which the stone is projected.	(2 mks)
b)	Find the equation of a line perpendicular to the curve $y = x^3 - 8x + 4$ at the point		
		in the form $y = mx + c$	(5 mks)

c) Find the base radius, **r** of a cylindrical hole with max volume which can be drilled into a cone of height 16 cm and radius 12 cm. (**Hint: use the diagram below**) (6 mks)

