

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2015/2016 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION (SCHOOL BASED)

FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE:

MAT 121

COURSE TITLE: CALCULUS I

DATE:

18/4/16

TIME: 11.00 AM -1.00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) State L Hospital's rule and hence evaluate the limit, $\lim_{x\to 0} \frac{e^{2x}-1}{x}$ (5 mks)
- (b) Using the first principle show that if $y = \sin x$ then $\frac{dy}{dx} = \cos x$ (4 mks)
- (c) Evaluate derivatives of the functions, simplify your answer.

(i)
$$y = \ln(x^2 + 2)^6$$
 (3 mks)

(ii)
$$y = \frac{x^2 + 3}{2x^2 - 4x}$$
 (3 mks)

- (d) Find the gradient of the curve $xy^2 + y^2 x^3 + 8 = 0$ at the point (1, 2) (4 mks)
- (e) Find the equation of the of the normal to the curve $y = x^2 4x + 1$ at the point (2, -3) in the form y = mx + c (5 mks)
- (f) (i) State Rolle's theorem (2 mks)
 - (ii) find the value of C prescribed in Rolle's theorem for $y = x^3 + 2x^2 x 1$ on the interval -2 < C < 1 (4 mks)

QUESTION TWO (20 MARKS)

- (a) What are stationary points. (1 mk)
- (b) Given the function $y = \frac{1}{4}x^4 + \frac{2}{3}x^3 \frac{9}{2}x^2 18x$ find
 - (i) all the stationary points on the curve (9 mks)
 - (ii) state the nature of all the stationary points (6 mks)
- (c) Sketch the curve of the function $y = x^3 2x^2 x + 2$ (4 mks)

QUESTION THREE (20 MARKS)

(a) Find the derivatives of each of the following functions using any appropriate method

(3 mks)
(i)
$$y = (x^2 - 3x + 4)^3$$

(i)
$$y = (x^2 + 3x + 1)$$

(ii) $y = x \ln x^2 + 2$ (4 mks)

(b) Use quotient rule to find
$$\frac{dy}{dx}$$
 of $y = \frac{x^2+3}{2x+4}$ simplify your answer (4 mks)

(c) If
$$y = e^{2x}$$
, show that $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ (5 mks)

(d) Find the derivative of
$$\tan x$$
 (4 mks)

QUESTION FOUR (20 MARKS)

(a) Evaluate the following limits

(i)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 4x}$$
 mks) (3)

(ii)
$$\lim_{x\to 1} \frac{\sqrt{x}-2}{x-1}$$
 (3 mks)

(b) Determine whether the following functions are continuous or notat the indicated points

(i)
$$f(x) = \frac{x^2 - 4}{x^3 + 1}$$
 at $x = 1$ (4 mks)
(ii) $f(x) = \frac{x^2 - 3x}{x^2 - 9}$ at $x = 3$ (5 mks)

(ii)
$$f(x) = \frac{x^2 - 3x}{x^2 - 9}$$
 at $x = 3$ (5 mks)

(iii)
$$h(x) =\begin{cases} \frac{x^3 - 1}{x - 1} & x \neq 1\\ 3 & x = 1 \end{cases}$$
 at $x = 1$ (5 mks)

QUESTION FIVE (20 MARKS)

- a) A stone is projected vertically upwards. If its height S after t seconds is given by $S = 10t - t^2$, find;
 - i. The maximum height attained by the stone. (3 mks)
 - (1 mk)ii. Its velocity at t = 1
 - Its acceleration at t = 2(3 mks) iii.
- b) A piece of wire 18cm long is to be bent to form a rectangle. If its length is x cm. Find;
 - i. The expression for its area in terms of x (2 mks)
 - The dimension of the rectangle with maximum area for the expression. (3 mks) ii.
- c) A company that manufactures dog food wishes to pack food in closed cylindrical tins. What should be the dimension of each tin if each is to have a volume of $128\pi\text{cm}^2$ and a (8 mks) minimum possible surface area.