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QUESTION ONE (30marks)

(a). i. What is a function (1mk)

ii. Classify the following as functions or not

a)x*+y=1 b). y2 = x Explain. (2 mks)

(b). i. Differentiate the function f(x) = cos xfrom the first principal (4 mks)
ii. Differentiate f(x) = m (3 mks)

iii. If y = log, (4 + 9x) what is y'(0)? (3 mks)

(c). i. Find the slope the function f(x) = %c% atx = —1. (4mks)
ii.Find the first derivative of2y = xy + cosx. (3 mks)

iii. Find the antiderivative of y = %}; + 4sec(2x) — sec®(4x + m) (3mks)
(e).i. Evaluate the limit limp o 6x2+(6x—hh)2-42x2 (3mks)

iii.Is the function f(x) defined below continuous on the whole of the real axis? Show your -
L—¢ =2

working.f(x) = [xz b ws (4mks)
QUESTION TWO (20MKS)
(a).Find Z—z (i).y = tan(e**) sec(e*). (4mks)
(i) y = In(e*™ + 2x + 1) (3mks)
(b).Find the range of f(x) = g2x’-4 (2 mks)
(c).i.What is the precise definition of a limit. (2mks)
ii. Using the definition above, proof that lim,_,3(4x —7) = 5. (4 mks)
(d). If f(x) = Si—:and g(x) = 3 — 3x find
(i). f o g(x) (2 mks)

(ii) g o f(1) (3 mks)



QUESTION THREE (20MKS)

(a). Given that x(t) = t + 2sin 2t and y(t) =t + 2 cos 5¢, find
(i). Z—i’atx =T (2mks)
(ii).%atx =T (5mks)

(b). Integrate
(i). [ x2V1 + x3 dx (3 mks)

a3
(i). | T dx(2mks)
(c). Find the absolute maximum and absolute minimum values of f(x) on the interval [—3,2] if

f(x) =x*—-8x2+2 (5 mks)

(d). If f(x) = ;-3—4, show that f o f~1(x) = x if f~1is the inverse function of f. (3 mks)

QUESTION FOUR (20MKS)

(a). i. State the Rolle’s Theorem. (2 marks)

ii. Verify that the function f(x) = sin x + cos x satisfies Rolle 's Theorem on [0,27] then find

the number(s) ¢ that satisfy the conclusion of the theorem. (5mks)

(b). A mass attached to a vertical spring has position function given by y = A sin wtwhere A is
the amplitude of oscillations and w is a constant.

i. Find the velocity and acceleration as functions of time. (2 mks)
ii. Show that the acceleration is proportional to the displacement y. (2 mks)
iii. Show that the speed is maximum when acceleration is zero. (3 mks)

(c). Evaluate the limit

. cos 6-0.5
11m9_.7r/3—9_n7 (3 mks)



(d). Find the equation of the normal line to the curve y = 4x? + 6x + 5 at (—1,3). (3 mks)

QUESTION FIVE (20MKS)

(a). When is a function continuous at a point? (2 mks)
-lifx<€-1
(b). Given the functionf(x) ={3x if —1<x<1
2Zx-1ifx21
(i). Find f(—=1), f(0) and f(1) (3 mks)
(ii). Sketch f(x) (2 mks)
“ (iii). Show that f(x) is or is not continuous at x = 1. (4 mks)

(c). For what values of x does f(x) = x + 2 sin x have a horizontal tangent? (3 mk)
(d). The position of a particle is given by the equation
; s =—t3+8t% + 16t
" Where t is measured in seconds and s in meters.
(i). Find the velocity at time t. (1 mk)
(ii). What is the velocity after 2 s and 5 s respectively? (2 mks)

(iii).When is the particle momentarily at rest? (3 mk)



