

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 110

COURSE TITLE:

BASIC CALCULUS

DATE:

08/10/18

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

ii. Classify the following as functions or not

a).
$$x^2 + y = 1$$
 b). $y^2 = x$ Explain. (2 mks)

(b). i. Differentiate the function
$$f(x) = \cos x$$
 from the first principal (4 mks)

ii. Differentiate
$$f(x) = \sqrt{x(3x^2 + 7)^3}$$
 (3 mks)

iii. If
$$y = \log_2(4 + 9x)$$
 what is $y'(0)$? (3 mks)

(c). i. Find the slope the function
$$f(x) = \frac{(x+2)^2}{(4-x^2)^3}$$
 at $x = -1$. (4mks)

ii. Find the first derivative of
$$2y = x^2y + \cos x$$
. (3 mks)

iii. Find the antiderivative of
$$y = \frac{1}{10x} + 4\sec(2x) - \sec^2(4x + \pi)$$
 (3mks)

(e).i. Evaluate the limit
$$\lim_{h\to 0} \frac{6x^2 + (6x - h)^2 - 42x^2}{h}$$
 (3mks)

iii.Is the function f(x) defined below continuous on the whole of the real axis? Show your

working.
$$f(x) = \begin{cases} 1 - x & x \le 2\\ x^2 - 2x & x > 2 \end{cases}$$
 (4mks)

QUESTION TWO (20MKS)

(a). Find
$$\frac{dy}{dx}$$
 (i). $y = \tan(e^{4x})\sec(e^{4x})$. (4mks)

(ii).
$$y = \ln(e^{4x} + 2x + 1)$$
 (3mks)

(b). Find the range of
$$f(x) = e^{2x^2-4}$$
 (2 mks)

ii. Using the definition above, proof that
$$\lim_{x\to 3} (4x-7) = 5$$
. (4 mks)

(d). If
$$f(x) = \frac{2x}{5x-3}$$
 and $g(x) = 3 - 3x$ find

(i).
$$f \circ g(x)$$
 (2 mks)

(ii)
$$g \circ f(1)$$
 (3 mks)

QUESTION THREE (20MKS)

(a). Given that $x(t) = t + 2 \sin 2t$ and $y(t) = t + 2 \cos 5t$, find

(i).
$$\frac{dy}{dx}$$
 at $x = \pi$. (2mks)

(ii).
$$\frac{d^2y}{dx^2}$$
 at $x = \pi$ (5mks)

(b). Integrate

(i).
$$\int x^2 \sqrt{1 + x^3} \, dx$$
 (3 mks)

(ii).
$$\int \frac{x^3}{1-x^4} \ dx$$
(2 mks)

(c). Find the absolute maximum and absolute minimum values of f(x) on the interval [-3,2] if

$$f(x) = x^4 - 8x^2 + 2 ag{5 mks}$$

(d). If
$$f(x) = \frac{2}{x-4}$$
, show that $f \circ f^{-1}(x) = x$ if f^{-1} is the inverse function of f . (3 mks)

QUESTION FOUR (20MKS)

(a). i. State the Rolle's Theorem.

(2 marks)

- ii. Verify that the function $f(x) = \sin x + \cos x$ satisfies Rolle's Theorem on $[0,2\pi]$ then find the number(s) c that satisfy the conclusion of the theorem. (5mks)
- (b). A mass attached to a vertical spring has position function given by $y = A \sin \omega t$ where A is the amplitude of oscillations and ω is a constant.
- i. Find the velocity and acceleration as functions of time. (2 mks)
- ii. Show that the acceleration is proportional to the displacement y. (2 mks)
- iii. Show that the speed is maximum when acceleration is zero. (3 mks)
- (c). Evaluate the limit

$$\lim_{\theta \to \pi/3} \frac{\cos \theta - 0.5}{\theta - \pi/3} \tag{3 mks}$$

(d). Find the equation of the normal line to the curve $y = 4x^2 + 6x + 5$ at (-1,3). (3 mks)

QUESTION FIVE (20MKS)

(b). Given the function
$$f(x) = \begin{cases} -1 & \text{if } x \le -1 \\ 3x & \text{if } -1 < x < 1 \\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

(i). Find
$$f(-1)$$
, $f(0)$ and $f(1)$ (3 mks)

(ii). Sketch
$$f(x)$$
 (2 mks)

(iii). Show that
$$f(x)$$
 is or is not continuous at $x = 1$. (4 mks)

(c). For what values of x does
$$f(x) = x + 2 \sin x$$
 have a horizontal tangent? (3 mk)

(d). The position of a particle is given by the equation

$$s = -t^3 + 8t^2 + 16t$$

Where t is measured in seconds and s in meters.

(i). Find the velocity at time
$$t$$
. (1 mk)