

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 110

COURSE TITLE:

BASIC CALCULUS I

DATE:

18/01/18

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

(a). i. What are monotonically increasing and decreasing functions? (2 mk)

ii. Identify the following equations as either functions or not

a).
$$x^2 + y^2 = 36$$
 b). $x = \pm \sqrt{y}$, $y > 0$. Explain. (2 mks)

iii. Find the domain of
$$f(x) = \frac{\sqrt{2x+4}}{x^2}$$
 (2 mks)

(b). i. When is the f(x) differentiable at x = a. (1 mk)

ii. Given that $f(x) = \frac{2x+1}{1-6x}$ is differentiable on some interval I determine its derivative from the first principle. (3 mks)

(c). i. Find the slope the function
$$f(x) = (x+2)^2(4-x)^3$$
 at $x=-1$. (3 mks)

ii. Find
$$y'(x)$$
 if $\ln y = xy + \sin x$. (3 mks)

iii. If
$$y = \sin(e^{x^2+1})$$
 find $\frac{dy}{dx}$. (3 mks)

(d). i.ax - by = 1 is the equation of the tangent of the function $y = x \ln x^2$ at x = e.

Find the value of b. (3 mks)

ii. Find the antiderivative of
$$y = \frac{12x^3 - 5x^2 + 1}{x^2}$$
 (2 mks)

(e). i.What is a limit of a function? (1 mk)

ii. Find the limit of
$$\lim_{x \to 1} f(x)$$
 if $f(x) = \begin{cases} 7 - 4x & x < 1 \\ x^2 + 2 & x \ge 1 \end{cases}$ (3 mk)

iii. Evaluate the limit
$$\lim_{z\to 8} \frac{2z^2 - 17z + 8}{z - 8}$$
 (2 mks)

QUESTION TWO (20MKS)

(a). Find
$$y''(x)$$
 if $tan(x + y) = x^2$ (4 mks)

(b). Simplify (i).
$$\int x^2 (3 - x^3) dx$$
 (3 mks)

(ii).
$$\int x^3 \cos(x^4 + 2) dx$$
 (4 mks)

(c). Differentiate
$$h(x) = \frac{\cos x}{\tan 2x}$$
 (3 mks)

(d). Evaluate the limit
$$\lim_{x\to 0} \frac{5x^3 - 2\sin 2x}{8x}$$
 (2 mks)

(e). A manufacturer sells ready meat in closed cylindrical cans each holding $128\pi~cm^3$.

QUESTION THREE (20MKS)

(a). Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ given that

$$x(t) = t^2 - t$$
 and $y(t) = \frac{2}{3}t^3 + \frac{1}{2}t^2 - t$. (5 mks)

(b). Find the slope of
$$x + 2y = (x - y^2 + 1)^2$$
 at $(1, -1)$. (3 mks)

- (c). Find all stationery points of the curve $y = \frac{1}{4}x^4 \frac{2}{3}x^3 \frac{9}{2}x^2 + 18x + 6$ and state their nature and sketch the curve (8mks)
- (d). Given that $f(x) = \frac{5}{x-7}$ find $\lim_{x\to 7^+} f(x)$, $\lim_{x\to 7^-} f(x)$ and $\lim_{x\to 7} f(x)$. (4 mks)

QUESTION FOUR (20MKS)

(a). i. State the Rolle's Theorem. (2 marks)

ii. Determine whether the function $f(x)=3\sin 2x$ satisfies the conditions of Rolle's Theorem for the interval $[0,2\pi]$. If so, find all numbers c that satisfies the conclusion of the theorem. (4 mks)

- (b). A farmer wishes to enclose a rectangular field with 500 ft of fence material where one of the longest side of the field is a building. Determine the dimensions that will maximize the enclosed area. (4 mks)
- (c). Show that differentiability at a point, implies continuity at the same point. (4 mks)

(d). If
$$f(x) = \frac{x}{x+3}$$
 and $g(x) = 4x - 1$

(i). Find $f \circ g$ (2 mks)

(ii). Show that
$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$
 (4 mks)

QUESTION FIVE (20MKS)

(a). i. Differentiate between odd and even function. (2 mks)

ii. Classify the following functions as odd, even or neither. Show your working. (2 mks)

(a).
$$y = -3x^2 + 1$$
 (b) $y = x^3 + x^2 + 1$

(a). Find the derivative of the following functions

(i).
$$f(x) = \left(\frac{x-2}{2x+1}\right)^9$$
 (4 mks)

(ii).
$$f(x) = \frac{2x-1}{x^2(3x+5)^9}$$
 (5 mks)

(c). i. When is a function
$$f(x)$$
 continuous at $x = c$? (1 mks)

ii. Let f(x) be the function defined below.

$$f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2} & \text{for } x \neq 2\\ k & \text{for } x = 2 \end{cases}$$

For which value of k is f(x) continuous at x = 2. (4 mks)

(d). Determine the slope of the normal line to the function $y = \frac{8}{x^2} + 4x + 9$ at x = 2. (2 mks)