

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 104

COURSE TITLE: ALGEBRAIC STRUCTURES I

DATE:

29/09/17

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a. Define the following
 - i. Trivial subgroup (1mark)
 - ii. Subgroup generated by x (2marks)
 - iii. Bijective function (2 marks)
 - iv. Inverse of a function (2 marks)
 - v. Union of sets (2 marks)
- b. Give four examples of fields

(4 marks)

- c. Let $\Omega = \{1, 2, 2, \dots, n \text{ and let } s_n \text{ denote the set of all permutation of } \Omega$.
 - Show that s_n is a group under composition of elements (4 marks)
- d. If S is a subset of the group G, show that s is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $ab^{-1} \in S$ (4 marks)
- e. If A is an invertible matrix, show that its inverse is unique (5 marks)
- f. For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Verify that $x_1 = (-3 -1 \ 1)$ and $x_2 = (1 \ 0 \ 0)$ are eigenvectors of A and find their corresponding eigenvalues (4 marks)

QUESTION TWO (20 MARKS)

- a. Define the following
 - i. Binary operation (2 marks)
 - ii. Group (3 marks)

b.

- i. Determine the group of symmetries of D_4 (8 Marks)
- ii. What is the order of D_4 (1 Mark)

a. Define the following

i. Subgroup (2 marks)

ii. Cyclic subgroup (2marks)

iii. Lagranges theorem (2 marks)

iv. Coset (2 marks)

b. Let $Z_{15} \ge \langle 5 \rangle = \{0,5.10\}$ for $k \in Z_{15}$, and the left coset is k+<5>,determine 5 distinct cosets

of <5> in Z_{15} (5 marks)

c. Show that G is cyclic if |G| = p is a prime (3 marks)

d. In a field, show that a product of two nonzero elements is nonzero (2 marks)

e. If a, b, c are elements of a field and $a \neq 0$, show that the following

cancellation law holds $ab = ac \implies b = c$ (2 marks)

QUESTION FOUR (20 MARKS)

a. Define the following

i. Ring (2 marks)

ii. Field (3 marks)

b. State three properties of rings (3 marks)

c. Show that Z_4 is not a field (3 marks)

d. Construct a cayley table for multiplication in Z_6 (3 Marks)

e. Show that cosets are either identical or disjoint (4 marks)

QUESTION FIVE (20 MARKS)

a. Find the difference. Write the answer in standard form.

i. $(4x^2 - 3) - (2x^2 + 6)$ (2 marks)

ii. $(-3x^3 + 7) - (5x^3 - x^3)$ (2 marks)

b. Define the following

i. Solving binomial equations (1 mark)

ii. Circulant matrices (1 Mark)

c. Generate a 3×3 circulant matrix starting with [a, b, c] (3 marks)

d. Consider the circulant matrix

 $C = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & 1 & 2 & 1 \\ 2 & 1 & 3 & 1 \end{bmatrix}$

i. Read the polynomial q from the first row of C. (1 mark)

ii. With n=4, determine the nth roots of unity (2 marks)

iii. Compute the eigenvalues of C. (4 marks)

e. Compute the corresponding eigenvectors (4 marks)