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QUESTION ONE (30 MARKS)
a.
i. Determine the group of symmetries of D, (8 Marks)
ii. What is the order of D, (1 Mark)
b. LetQ={1,22.......nandlets, denote the set of all permutation of 2.
Show that s, isa group under composition of elements (4 marks)
c. Show that cosets are either identical or disjoint (4 marks)
d. Show that G is cyclic if |G| = p is a prime (3 marks)
e. Define the following
i.  Subgroup (2 marks)
ii.  Cyclic subgroup (2marks)
iii.  Lagranges theorem (2 marks)
iv.  Coset (2 marks)
v.  Group (3 marks )

QUESTION TWO (20 MARKS)

a. LetZ,s = (5) ={0,5.10} for keZ,s, and the left coset is k+<5>,determine 5 distinct
cosets of <5>in  Zi; (5 marks)
b. Determine the symmetric group 3 (7Tmarks).

c. Define the following

i.  Bijective function (2 marks)
ii.  Inverse of a function ( 2 marks )
iti.  Union of sets ( 2 marks)

iv.  Binary operation (2 marks)




QUESTION THREE (20 MARKS)

a. State three properties of rings (3 marks)
b. Show that Z, is not a field (3 marks)
¢. Construct a cayley table for multiplication in Zg (3 Marks)
d. In a field ,show that a product of two nonzero elements is nonzero (2 marks)

e. Ifa,b,c are elements of a field and a # 0, show that the following
cancellation law holds ab =ac = b =¢ (2 marks)
f. Define the following
i, Ring (2 marks)
ii. Field (3 marks)

QUESTION FOUR (20 MARKS)

a. Find the difference. Write the answer in standard form.
i. (4x% =3) — (2x* + 6) (3 marks)
ii. (—3x3 +7) — (5x3 — x?) (2 marks)
b. Define the following

i Solving binomial equations (1 mark)
ii. Circulant matrices (1 Mark)
c. Generate a 3 X 3 circulant matrix starting with [a, b, ] (3 marks)

d. Consider the circulant matrix

1 2 13

£=3 1 2 1

z 1 &1
L. Read the polynomial q from the first row of C. (1 mark)
ii. With n=4, determine the nth roots of unity (2 marks)
ii. Compute the eigenvalues of C. (4 marks)

e. Compute the corresponding eigenvectors (4 marks)




QUESTION FIVE (20 MARKYS)

If S is a subset of the group G, show that s is a subgroup of G if and only if S is nonempty

and whenever a, beS ,then ab™eS (4 marks)

. If A'is an invertible matrix, show that its inverse is unique (5 marks )

+ =g 1
0 0 O

¥ I 1

For the matrix

A=

Verify thatx; = (=3 -1 1)and x, = (1 0 0) are eigenvectors of A and find their

corresponding eigenvalues (4 marks)

. Define the following
i Trivial subgroup (Imark)
ii. Subgroup generated by x (2marks)

Give four examples of fields (4 marks)



