

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 104

COURSE TITLE: ALGEBRAIC STRUCTURES I

DATE:

19/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a.					
	i.	Determine the group of symmetries of D_4	(8 Marks)		
	ii.	What is the order of D_4	(1 Mark)		
b.	Let $\Omega = \{1, 2, 2, \dots, n \text{ and let } s_n \text{ denote the set of all permutation of } \Omega$.				
	Shov	with that s_n is a group under composition of elements	(4 marks)		
c.	Show	that cosets are either identical or disjoint	(4 marks)		
d.	Show that G is cyclic if $ G = p$ is a prime (3 marks)		(3 marks)		
e.	Define the following				
	i.	Subgroup	(2 marks)		
	ii.	Cyclic subgroup	(2marks)		
	iii.	Lagranges theorem	(2 marks)		
	iv.	Coset	(2 marks)		
	V.	Group	(3 marks)		
OLIFCTION TWO (20 MARKS)					
QUESTION TWO (20 MARKS)					
a. Let $Z_{15} \ge \langle 5 \rangle = \{0,5.10\}$ for $k \in Z_{15}$, and the left coset is k+<5>,determine 5 distinct					
	coset	s of $\langle 5 \rangle$ in Z_{15}	(5 marks)		
b.	Deter	mine the symmetric group s_3	(7marks).		
c. Define the following					
	i. B	ijective function	(2 marks)		
i	i. It	nverse of a function	(2 marks)		
ii	i. U	Inion of sets	(2 marks)		
i	v. B	inary operation	(2 marks)		

QUESTION THREE (20 MARKS)

a.	State three properties of rings	(3 marks)	
b.	Show that Z_4 is not a field	(3 marks)	
c.	Construct a cayley table for multiplication in Z_6	(3 Marks)	
d.	In a field, show that a product of two nonzero elements is nonzero	(2 marks)	
e.	If a, b, c are elements of a field and $a \neq 0$, show that the following		
	cancellation law holds $ab = ac \implies b = c$	(2 marks)	
f.			
	i. Ring	(2 marks)	
	ii. Field	(3 marks)	
	QUESTION FOUR (20 MARKS)		
a.	Find the difference. Write the answer in standard form.		
	i. $(4x^2-3)-(2x^2+6)$	(3 marks)	
	ii. $(-3x^3+7)-(5x^3-x^3)$	(2 marks)	
b.	b. Define the following		
	i. Solving binomial equations	(1 mark)	
	ii. Circulant matrices	(1 Mark)	
c.	Generate a 3×3 circulant matrix starting with $[a, b, c]$	(3 marks)	
d.	d. Consider the circulant matrix		
	$C = \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	i. Read the polynomial q from the first row of C.	(1 mark)	
		(2 marks)	
	ii. With n=4, determine the nth roots of unity	(4 marks)	
	iii. Compute the eigenvalues of C.	,	

e. Compute the corresponding eigenvectors

(4 marks)

QUESTION FIVE (20 MARKS)

- a. If S is a subset of the group G, show that s is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $ab^{-1} \in S$ (4 marks)
- b. If A is an invertible matrix, show that its inverse is unique (5 marks)
- c. For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Verify that $x_1 = (-3 -1 \ 1)$ and $x_2 = (1 \ 0 \ 0)$ are eigenvectors of A and find their corresponding eigenvalues (4 marks)

d. Define the following

i. Trivial subgroup (1mark)

ii. Subgroup generated by x (2marks)

e. Give four examples of fields (4 marks)