

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 102

COURSE TITLE: FOUNDATION MATHEMATICS II

DATE:

14/9/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(a) Find the angle between two vectors
$$2i - 5j - 7k$$
 and $-i + 4j - 6k$ (6 mks)

(b) Given
$$A = \begin{bmatrix} 2m & m \\ -3 & m \end{bmatrix}$$
 has determinant of 9 find m (4 mks)

(c) If
$$a = 2i + 5j = 3k$$
 and $b = i = j + 2k$ evaluate $2b \cdot (a \times b)$ (5 mks)

(d) Find the solution of the following system of linear equations using augmented matrices (7 mks)

$$2x + y + z = -1$$
$$x + 2y + z = 0$$

$$3x - 2z = 5$$

(e) Find P if
$$(P^T - 4I)^{-1} = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$$
 (5 mks)

(f) Given that
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 1 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 6 \\ 4 & 1 \\ 10 & 0 \end{bmatrix}$ find $(A + B^T)^T$ (3 mks)

QUESTION TWO (20 MARKS)

(a) Find the projection of
$$-i - 2j + 2k$$
 on $5i - j - 3k$ (4 mks)

(b) Show that
$$||a \times b|| = ||a|| ||b|| \sin\theta$$
 (5 mks)

(c) Reduce the system into row-echelon form hence by backward substitution solve it

$$x + y + z = 2$$
 (5 mks)
-x + 3y + 2z = 8

$$4x + 5y + z = 6$$

(d) Given that
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix}$
Prove that $\det(AB) = \det A \det B$ (6 mks)

QUESTION THREE (20 MARKS)

(a) Find the inverse of the matrix
$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$$
 (10 mks)

(b) Compute the adjoint of P given

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & 5 \\ -2 & -6 & 7 \end{bmatrix}$$
 (10 mks)

QUESTION FOUR (20 MARKS)

(a) Use Cramer's rule to find
$$x_1, x_2$$
, and x_3 ,

$$5x_1 + x_2 - x_3 = 4$$

(10 mks)

(4 mks)

$$9x_1 + x_2 - x_3 = 1$$

$$5x_1 - x_2 + 5x_3 = 2$$

(a) Compute the determinant of
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{bmatrix}$$
 (5 mks)

- (g) Using examples define
 - (i) A matrix
 - (ii) A vector

QUESTION FIVE (20 MARKS)

(b) Given
$$p = \langle 3, -2, -1 \rangle$$
 and $q = \langle 4, -3, 2 \rangle$ compute

(i)
$$p \times q$$
 (3 mks)

(ii)
$$q \times 2p$$
 (4 mks)

(c) If
$$det A = 5$$
 and $det B = 6$ calculate $det(A^3B^{-1}A^TB^2)$ (5 mks)

(d) Determine if the two vectors are parallel, orthogonal or neither
$$3i - 2j + 3k$$
 and $5i + 4j - 2k$ (3 mks)

(b) Compute the rank of
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 0 & 5 \\ 3 & 5 & 1 & 4 \end{bmatrix}$$
 (6 mks)