

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2015/2016 ACADEMIC YEAR** FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 102

COURSE TITLE: FOUNDATION MATHEMATICS II

DATE:

10/5/16

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

- (a) With the aid of examples briefly define the following terms (2mks)
 - (i) A vector
 - (ii) A matrix
- (b) Find the angle between the vectors $\mathbf{a} = 2i + 3j 3k$ and $\mathbf{b} = -4i + 5j + k$

(4 mks)

- (c) If θ is the angle between \boldsymbol{a} and $\boldsymbol{b}0 \le \theta \le \pi$ show that $\|\boldsymbol{a} \times \boldsymbol{b}\| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta$ (5 mks)
- (d) Show that $\vec{A} \times \vec{B}$ is a vector orthogonal to both \vec{A} and \vec{B} (5mks)
- (e) Reduce the system into row-echelon form hence by back substitution solve it (5 mks)

$$x + y + z = 2$$

 $-x + 3y + 2z = 8$
 $4x + 5y + z = 6$

(f) Find all the solutions of the following system of equations using augmented matrix (5 mks)

$$3x + 2y - 3z = -9$$

$$x - 3y + 2z = 4$$

$$-2x + 5y - 5z = -17$$

(g) Find A if
$$(A^T + 3I)^{-1} = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$$
 (4 mks)

QUESTION TWO (20 MARKS)

- (a) Prove that $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$ (6 mks)
- (b) Find the projection of 2i 3j + 2k on 5i 3k (4 mks)
- (c) Calculate $\vec{P} \times \vec{Q}$ given $\vec{P} = \langle 2,3,4 \rangle$ and $\vec{Q} = \langle -3,-1,-5 \rangle$ (4 mks)
- (d) Compute the rank of

$$A = \begin{bmatrix} 1 & 3 & -26 \\ 2 & 5 & 3 & 0 \\ -3 & 4 & 1 & 7 \end{bmatrix}$$
 (6 mks)

QUESTION THREE(20 MARKS)

- (a) Find the value of μ if $\vec{P} = 2\mu i + 5j + 9k$ and $\vec{Q} = \mu i + 3\mu j + 2k$ are perpendicular (4 mks)
- (b) Find the cofactors of matrix

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 4 \\ 1 & -2 & 6 \end{bmatrix}$$
 (6 mks)

(c) Use adjoint method to find the inverse of the matrix

$$C = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$$
 (10 mks)

QUESTION FOUR(20 MARKS)

- (a) Determine if the two vectors are parallel, orthogonal or neither (3 mks) (5, -1, 3) and (2, 4, -2)
- (b) Prove the following characteristics of determinant using the matrices $A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$ and

$$B = \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix}$$
 (i) $\det(AB) = \det(A) \det(B)$ (5mks)

(ii)
$$det(B)^T = \det B$$
 (3mks)

(c) Find the values of b for which
$$\det A = 0$$
 $A = \begin{bmatrix} 1 & b & b \\ b & 1 & b \\ b & b & 1 \end{bmatrix}$ (5mks)

(d) If
$$P = \begin{bmatrix} 2 & 3 & -14 \\ 4 & 2 & 7 & 8 \\ 3 & -2 & 100 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 2 & -3 & 1 & -2 \end{bmatrix}$ find matrix R where
$$R = P \times Q^T \tag{4mks}$$

QUESTION FIVE(20 MARKS)

(a) Find the values of x_1, x_2 and x_3 using Cramer's Rule (10 mks)

$$3x_1 - 4x_2 - 2x_3 = 1$$

$$2x_1 + 5x_2 - 2x_3 = 3$$

$$x_1 + 2x_2 + x_3 = 2$$

(b) Find the value of x such that $(2x 3x) {5x \choose 1} = (18)$ (4 mks)

(c) Given the matrix
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 5 & 6 & 4 \\ 8 & 7 & 9 \end{bmatrix}$$
 find det(adjoint A) (6 mks)