

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 101

COURSE TITLE:

FOUNDATION MATHEMATICS I

DATE:

17/01/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

	(a) Define the following terms giving an example in each case	
	(i) A set	(2mks)
	(ii) A totology	(2mks)
	(b) Given two propositions A and B. Make a truth table for $A \Rightarrow B$.	(3mks)
	(c) Taking R, the set of real numbers as the universal set, give four examples of in	nfinite sets
	whose complement sets are also infinite.	(4mks)
	(d) Let $z_1 = 3$ +-i and $z_2 = -2 + 5i$, find $\frac{z_1}{z_2}$.	(4mks)
	(e) How many five letter code words can be formed from the letters of the word A	ALGEBRA
	if the code words must begin with A and end with A?	(4mks)
	(f) A f f: 1	->
	(f) A function f is given by f: $x \to \frac{1}{ x -1}$ whose domain is $\{x : x = 1, x \neq -1 \}$	ER}; Show
	that f is not a bijection.	(4mks)
	(g) Given that Sin A = $\frac{3}{4}$ and 0° < A < 90° , find without using tables the other four	r
	trigonometric ratios for angle A	(4mks)
	(h) In how many ways can five basketball players be selected from a team of twel	ve players
	to participate in a friendly match.	(3mks)
Q	UESTION TWO (20 MARKS)	
	(a) Use addition formula to evaluate Cos 135 ⁰ .	(4mks)
	(b) Without using tables or a calculator evaluate Sin 240 ⁰ .	(2mks)
	(c) Simplify $\cos 80^{0} \cos 20^{0} + \sin 80^{0} \sin 20^{0}$.	(2mks)
	(d) Use double angle identities to evaluate Cos 60 ⁰ .	(4mks)
	(e) Express Sin 6x − Sin 4x as a product.	(3mks)
	(f) Show that $Sin x + Cos xCot x = Cosec x$	(5mks)
Q	UESTION THREE (20 MARKS)	
	(a) How many 11- letter code words can be formed from the letters of the word	
	INDEPENDENT?	(3mks)
	(b) In how many ways can 4 boys and two girls be seated in a raw if	
	(i) The girls must not be separated	(2mks)
	(ii) The girls are separated	(2mks)
	(c) In how many ways can a boy select 3 toffees, 5 chestnuts and 4 berries from a	
	containing 8 toffees, 9 chestnuts and six berries?	(3mks)
	(d) A box contains 15 balls; 5 of which are red, 4 are green and 6 are blue. In how ways can 3 balls be chosen if	many
	(i) There is no restriction?	(2mks)
	(1) There is no resultation:	(2mks)

(ii) The balls are of the same colour?(iii) The balls are of different colour?(iv) Only two balls are of the same colour?	(3mks) (2mks) (3mks)		
QUESTION FOUR (20 MARKS)			
(a) If $z = 1 + i$, find the imaginary and the real parts of $z + \frac{1}{z}$.	(4mks)		
(b) Given $z_1 = (3-i)$; $z_2 = 2i$ and $z_3 = 2-2i$, show that $ z_1 - z_3 = z_1 - z_2 $.	(5mks)		
(c) Find the fourth roots of i.	(6mks)		
(d) If $a = 3$ –I and $b = 1 + 2i$, evaluate $\frac{a}{2b}$.	(3mks)		
(e) Represent -5 + 6i on an Argand diagram.	(2mks)		
QUESTION FIVE (20 MARKS)			
(a) Given $X = \{2,4,6,8,10,12\}$ and $Y = \{2,3,4,5,6,7,8\}$. Determine $n(X \cup Y)$.	(4mks)		
(b) Determine the truth tables for the following propositions			
$(i)\sim (A \Rightarrow B) \lor (\sim A \land \sim B).$	(7mks)		
$(ii)(A \land B) \Rightarrow [\sim (A \lor B) \Rightarrow A].$	(7mks)		
(c) Use a venn diagram to show that the sets $A - B$ and $A \cap B^c$ are equal.	(2mks)		