

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2016/2017 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 100

COURSE TITLE: MATHEMATICS FOR TECHNOLOGISTS

DATE:

15/09/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

- a) By using the definition of a limit, prove that $\lim_{x \to 3} (2x + 1) = 7$ (5 marks)
- b) Find the following limits if they exist:

i)
$$\lim_{x \to -\infty} \frac{3x^2 - 7}{2x + 7}$$
 (3 marks)

ii)
$$\lim_{h \to 0} \frac{7(x+h)^2 - 7x^2}{h}$$
 (3 marks)

c) Find the derivative of the implicit function

$$7y^2 + \sin(3x) = 12 - y^4 \tag{3 marks}$$

d) Find the equation of the tangent line at the given point.

$$y^2 e^{2x} = 3y + x^2$$
 at (0,3)

e) Evaluate the following

$$\int x^2 \cos(4x) \, dx \tag{5 marks}$$

- f) Determine the angle between vectors $\mathbf{a} = \langle 2, 2, 1 \rangle$ and $\mathbf{b} = \langle 5, 3, 2 \rangle$ (3 marks)
- g) Determine whether the function f given by $f(x) = \frac{x^6 x^2}{x + x^3}$ is even, odd or neither. (4 marks)

QUESTION 2 (20 MARKS)

- a) Find the unit vector that points in the direction of $\mathbf{w} = \langle -5, 2, 1 \rangle$ (2 marks)
- b) Given that $\vec{a} = \langle 2, 1, -1 \rangle$ and $\vec{b} = \langle -3, 4, 1 \rangle$ compute each of the following

i)
$$\vec{a} \times \vec{b}$$
 (3 marks)

ii)
$$\vec{b} \times \vec{a}$$
 (3 marks)

- c) Prove that $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$ (5 marks)
- d) Show that $\mathbf{u} \times \mathbf{u} = 0$ for any vector \mathbf{u} . (3 marks)
- e) A function f given by $f(x) = \frac{72}{ax+b}$ is such that f(7)=9 and f(b)=12. Find the values of a and b.

(4 marks)

QUESTION 3 (20 MARKS)

- a) Find the derivative indicated in the following:
 - i) $\frac{d}{dx} \left[2\sin(3x + \tan(x)) \right]$ (3 marks)

ii)
$$\frac{d}{dt} \left[\left(1 + \sqrt{t^3} \right) \left(t^{-3} - 2\sqrt[3]{t} \right) \right]$$
 (3 marks)

- b) If $y=3x^2+5x-10$, show that $y-y'x+\frac{1}{2}y''x^2+10=0$ (4 marks)
- c) 100 students were asked whether they had taken courses in any of the three areas; Sociology, Anthropology and History. The results were: 45 had taken sociology, 38 had taken Anthropology, 21 had taken History, 18 had taken both Anthropology and Sociology, 9 had taken Sociology and history, 4 had taken History and Anthropology while 23 had taken no courses in any of the three areas.
 - i) Draw a Venn-diagram to represent the above information. (6 marks)

Hence, determine the number of students who had taken courses in

- ii) All the three areas (2 marks)
- iii) Exactly one of the areas (1 mark)
- iv) Exactly two of the areas (1 mark)

QUESTION 4 (20 MARKS)

- a) Compute the determinant of $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{pmatrix}$ (5 marks)
- b) Show that the matrix $\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 0 & 5 \\ 3 & 5 & 1 & 4 \end{pmatrix}$ has rank 3. (2 marks)
- c) If det A = 2 and det B = 5, calculate det $\left(A^3 B^{-1} A^T B^2\right)$. (5 marks)
- d) Determine the particular solution of the differential equation $5 \frac{dy}{dx} + 2x = 3$, given the boundary conditions $y = 1\frac{2}{5}$ when x = 2. (4 marks)
- e) The bending moment M of a beam is given by $\frac{dm}{dx} = -w(l-x)$, where w and l are constants. Determine M in terms of x given that $M = \frac{1}{2}wl^2$ when x = 0. (4 marks)

QUESTION 5 (20 MARKS)

a) Perform the following integrals

i)
$$\int \sin^3 \left(\frac{2}{3}x\right) \cos^4 \left(\frac{2}{3}x\right) dx$$
 (6 marks)

ii)
$$\int \frac{3x+1}{x^2-x-6}$$
 (5 marks)

iii)
$$\int (x+1)(x^2+3)dx$$
 (3 marks)

b) Let A and B be sets such that

$$(A \cup B)' = \{x, y, z\}$$

$$B - A = \{w\}$$

$$A \cup B' = \{u, v, t, x, y, z\} \text{ and }$$

$$B \cap A = \{t\}$$

Find A, B and ξ , the smallest universal set for the sets A and B. (6 marks)