





## KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.S.C

COURSE CODE: IET 231

COURSE TITLE: APPLIED BIOCHEMISTRY FOR-ENERGY

**DURATION: 2 HOURS** 

DATE... 18/10/2018 TIME: 8:00-10:00Am

## **INSTRUCTIONS TO CANDIDATES**

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over



KIBU observes ZERO tolerance to examination cheating

- a) Define the following terms as used in applied biochemistry for bio-energy (4mks)
  - i. Syngas
  - ii. Greenhouse Gas
  - iii. Biomass
  - iv. Bagasse
- b) Discuss four sustainable energies that can be alternative to energy derived from fossil fuels.

  (8mks)
- c) Explain three generations of fuels from biomass (6mks)
- d) Explain four benefits of anaerobic digestion of organic waste. (8mks)
- e) Describe how you would carry out the following tests in the laboratory (4mks)
  - i. Benedict's test
  - ii. Clinistix paper test

Q2.

a) Describe three ways how biogas from anaerobic digester is industrially purified.

(6mks)

- i. De-carbonation
- ii. Desulfurization
- iii. Dehydration
- b) Complete the equation below and show chemical mechanisms of transesterification reaction in presence of an acid.
   (8mks)

$$H_2C$$
— $OCOR_1$   
 $HC$ — $OCOR_2$  + 3 ROH  $\rightleftharpoons$   
 $H_2C$ — $OCOR_3$ 

b) State two products of the above transesterification reaction (2mks)

| c)  | Des  | cribe how the following are biodegraded in biofuel production                                | (6mks) |  |
|-----|------|----------------------------------------------------------------------------------------------|--------|--|
|     | i.   | Lignin                                                                                       |        |  |
|     | ii.  | Cellulose                                                                                    |        |  |
|     | iii. | Hemicellulose                                                                                |        |  |
|     |      |                                                                                              |        |  |
| Q3. |      |                                                                                              |        |  |
| a)  | Exp  | plain four types of biomass that are suitable for biofuels production                        | (8mks) |  |
| b)  | Exp  | Explain the following biochemical processes (4mk                                             |        |  |
|     | i    | . Ethanol fermentation                                                                       |        |  |
|     | ii   | . lipid biosynthesis                                                                         |        |  |
| c)  | Dis  | scuss four merits of using biodiesel instead of diesel fuel                                  | (8mks) |  |
|     |      |                                                                                              |        |  |
| Q4. |      |                                                                                              |        |  |
| a)  | Sta  | te two types of energy crops                                                                 | (2mks) |  |
| b)  | Exp  | Explain three reasons why different plants are preferred in biofuels production              |        |  |
|     | (6n  | (6mks)                                                                                       |        |  |
| c)  | Cal  | Calculate amount of ethanol that can be produced when 1000 kg of sugar is allowed            |        |  |
|     | to 1 | to ferment given that specific gravity of ethanol at 25°C is 0.789g/cm <sup>3</sup> . (6mks) |        |  |
| d)  | Exp  | plain the following terms as used in applied biochemistry for bioenergy                      | (6mks) |  |
|     | i    | . Phospholipids                                                                              |        |  |
|     | ii   | . Glycolipids                                                                                |        |  |
|     | iii  | . Lipoproteins                                                                               |        |  |
|     |      |                                                                                              |        |  |

- a) Explain four reasons why it is important to carrying out pre-treatment on lignocellulose in biofuel production. (8mks)
- b) Discuss the following pre-treatment processes that are carried out on lignocellulose in biofuel production (8mks)
  - i. Steam explosion
  - ii. Wet oxidation
  - iii. Alkaline hydrolysis
  - iv. Carbon dioxide explosion
- c) Explain roles of the following enzymes in biofuel production (4mks)
  - i. Trichoderma cellulasses
  - ii. Peroxidases