

KIBABII UNIVERSITY

2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN RENEWABLE ENERGY AND **BIOFUELS TECHNOLOGY**

COURSE CODE: IET 311

COURSE TITLE: Solar, Photovoltaics and OTEC Energy

15/10/2018

TIME: 8-10AM

11.00am -

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other two questions

This paper consists of 4 printed pages. Please Turn over

Question One

(a)	Explain the important characteristics of the following solar cell technologies		
	(i)	Mono-crystalline silicon	[2 Marks]
	(ii)	Poly-crystalline silicon	[2 Marks]
	(iii)	Amorphous silicon	[2 Marks]
(b)	With the help of sketches explain operation of the following		
	(i)	Flat plate collector	[4 Marks]
	(ii)	Evacuated tube collector	[4 Marks]
	(iii)	Solar Cell	[4 Marks]
(c)	Briefly explain the use of solar energy in		
	(i)	Cooking	[2 Marks]
	(ii)	Crop drying	[2 Marks]
	(iii)	Water pumping	[2 Marks]
(d)	(i)	State components of solar irradiation that are incident on an inclined surface	[1 Mark]
	(ii)	State the physical process through which the Sun generates energy	[1 Mark]
	(iii)	State what the Sun loses through the generation of energy	[1 Mark]
(e)	poss the v capa of 10	A hotel installation near you wants to cover their water heating demand by solar energy. However, they want to know first if it is possible. The hotel needs 1500 L/day of warm water every day and the water has to be heated from 10 to 60 °C. The specific heat capacity of water is 4.18J/gK. Assume an irradiance of 1000W/m² for 3 equivalent sun hours and an efficiency of 70% for the installation.	
	(i)	How much energy does the system need to produce per day to meet the warm water demand? Give your answer in kWh/day.	[3 Marks]

(ii) If the hotel has 30m² available for this application, what is the maximum percentage of the warm water demand that can be covered by solar energy?

Question Two

(a)	The figure below shows an I-V curve, with a superimposed power
	curve for a solar cell. Explain the following shown on the figure

(i)	I_{sc}	[Z Marks]
(ii)	V_{oc}	[2 Marks]
(iii)	P_{max}	[2 Marks]
(iv)	I_{mp}	[2 Marks]
(v)	V_{mp}	[2 Marks]
	and describe the processes which are responsible for the lation of irradiation through the atmosphere.	[10 Marks]

Question Three

(b)

Describe the pumping of water using solar PV system	[20 Marks]
Describe the numping of water using solar r v system	[20 1.101.1]

Question Four

Question rout		
(a)	Explain the principle underlying the working of a solar cell	[4 Marks]
(b)	Explain the purpose of each of the following components of solar	
	PV systems	

(i)	Solar cell, module, array	[3 Marks]
(ii)	Storage batteries	[2 Marks]
(iii)	Charge regulators	[2 Marks]
(iv)	Inverters	[2 Marks]
(1V)	Wiring and support structures	[4 Marks]

(c) Calculate the maximum power (in mW) of a solar cell having current and voltage values of 30mA and 0.7V respectively at the maximum power point of the solar cell

[3 Marks]

[2 Marks]

Question Five

During the winter, the inside of an average house is

maintained at 20 $^{\circ}$ C, while the outside temperature is 0 $^{\circ}$ C. Assuming that the only mechanism of heat transfer is conduction, the walls are 10 cm thick and the heat conductivity of the walls is $0.5 \mathrm{W/Km}$.

- (a) Calculate the heat flux from the room to the surroundings [6 Marks] in W/m^2 .
- (b) We decide that, to reduce the heat loss through the walls, the material should be changed to an insulator material. The new overall conductivity will be 0.1W/Km, and the thickness of the wall is maintained.

Calculate the reduction of the heat flux throughout the walls in % compared to the initial case.

[8 Marks]

(c) State and explain the most important heat transfer mechanism in domestic solar water heating systems

[6 Mark]