

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION
FOR THE DIPLOMA IN EDUCATION

MATHEMATICS

COURSE CODE:

EDM 106

COURSE TITLE:

TRIGONOMETRY, GEOMETRY AND VECTORS I

DATE:

17/01/18

TIME: 2.00 PM- 4.00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (28mks)

a) Find the radius and the coordinates of the centre of the circle

 $2x^2 + 2y^2 - 8x + 5y + 10 = 0$ (5mrks)

- b) Differentiate a scalar and a vector quantity and give an example in each. (4mrks)
- c) Given the vectors A = 4i + 5j 6k and B = i + 6j + 4k find (4mrks)
 - i. A-B
 - ii. A.B
- d) \triangle *ABC* with vertices A(2,1) B(3,5) and C(-1,-2) is transformed into triangle $A^IB^IC^I$ by a translation that maps a point A^I onto $A^I(6,4)$. Find the coordinates of B^I and C^I

Find the coordinates of B^I and C^I (4mrks) e) Solve the equations given that the angles are complementary. (3mrks)

- e) Solve the equations given that the angles are complementary. (3mrks) $\sin(2x + 40^{\circ}) = \cos(3x + 20^{\circ})$
- f) Find the positive angles not greater than 180° which satisfy the equation. (4mrks)

$$\frac{\sin^2\theta}{\cos\theta} - 2\tan\theta = 0$$

g) In a triangle, QR = 3.5, RP = 4 and PQ = 5. Calculate the size of angle P and hence find the area of the triangle. (4mrks)

QUESTION TWO (16mks)

- a) On the same axes, draw the graphs of $y = 2\cos\frac{1}{2}x$ and $y = \sin x$ for $0^0 \le x \le 360^0$. Hence;
 - i. Find the values of x that satisfy the equations $2 \cos \frac{1}{2} x = \sin x$
 - ii. State the amplitude and period in each case. (16mrks)

QUESTION THREE (16mks)

- a) The equation of a line l_1 is 2x 3y = 7. Find in the form of ax + by + c = 0, the equation of line l_2 that passes through (4, -3) and is perpendicular to line l_1 . (4mrks)
- b) Verify that (3,2) lie on the circle $x^2 + y^2 8x + 2y + 7 = 0$. Then find the equation of the tangent at this point. (8mrks)
- c) Find the equation of a common chord of the circles $x^2 + y^2 4x 2y + 1 = 0 \text{ and } x^2 + y^2 + 4x 6y 10 = 0$ (2mrks)
- d) Find the midpoint of the straight line joining A(2,1) and B(6,5) (2mrks)

QUESTION FOUR (16mks)

- a) Find the scalar projection of (2,4,-1) onto (3,3,4) (4mrks)
- b) Find the magnitude and direction of the displacement vector
 - i. \overrightarrow{AB}
 - ii. \overrightarrow{BA}

Where A and B are the points (2,1) and (8,9) respectively. (6mrks)

- c) Given that A is a point (1,3) and that \overrightarrow{AB} and \overrightarrow{AD} are $\left(\frac{4}{-1}\right)$ and $\left(\frac{2}{3}\right)$ respectively. Find the coordinates of the vertices B, C, D of the parallelogram ABCD. (4mrks)
- d) Given the point A(1,1) B(5,4) C(8,9) and D(0,3). Show that ABCD is a trapezium. (2mrks)

QUESTION FIVE (16mks)

- a) Solve triangle XYZ in which x = 13.4cm, z = 5cm and angle $XYZ = 57.7^{\circ}$ (6mks)
- b) Given that $\sin \theta = \frac{3}{5}$ and $\tan \theta = \frac{3}{4}$. Find $\cos \theta$. (3mrks)
- c) Find the angles between 0^{0} and 360^{0} whose;
 - i. sin is -0.5736
 - ii. tan *is* 1.198 (4mrks)
- d) A traditional stool has a triangular top which measures 27cm, 35cm and 42cm. Calculate area of the top. (3mrks)