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Abstract

We develop a two-patch migration model of the classical Lotka-
Voltera predator-prey system with a time lag in the migration between
patches. We show that when the migration rate is less than the prey
growth rate the species in at least one patch survives. When the mi-
gration rate is greater than the prey growth rate, the species in both
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patches do not survive. Furthermore, when the migration rate is equal
to the prey growth rate, the population will oscillate.

Mathematics Subject Classification: 37L15
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1 Introduction

The Lotka-Volterra model assumes that the environment is homogeneous, see
for instance [14], [15], [18], but that is not the case since the environment is
made up of many patches which are connected by a diffusion-like process.

In predator prey theory, diffusion will represent migration of either the prey,
predator population or both. Migration occurs when a species moves from one
patch to another due to some unfavourable conditions in its initial patch,
for example, lack of food (for both the predator and prey), lack of security
mainly for the prey population, bad climatic conditions, overpopulation of
either the predator or prey species in a patch, among others, see for instance
[17]. There is abundant literature on Lotka-Voltera models with migration, see
for instance [6],[13],[1],[15]. However, these models are overlay restrictive, they
assume that cause and effect are instanteneous; that is local interaction of the
predator and prey and their migration is instanteneous. This is not the case
in real life. Predators and prey need some “exprience”before migrating. Thus
a time lag in the migration terms of the equations describing the dynamics of
the interacting populations.

Very little attention has been given to the models that consider a time
delay in the migration of the predator and prey due to the fact that the prey
do not migrate immediately after being preyed on and the predator do not
migrate immediately after lacking their source of food. Hence there is need to
formulate a model that takes into consideration the time lags in the migration
of both the predator and prey.

This is how this paper is organised. In §2 , we develop a model similar to
that proposed by Mchich et. al [13] and Abdllaoui et. al, [1] by introducing
time lags in the migration of the prey and predator. In §3, we analyze the
model by determining the Exponential bound of the model and its character-
istic equation. In §3.2, we use an approach adopted from [19], [20] by taking
advantage of the symmetry in the model to break the linear part of the model
into two invariant manifolds and analyse the stability of solutions on the two
manifolds.
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2 The Model

A simple Predator-Prey model in a two-patches dynamics is described by the
Lotka-Volterra Equation, thus:

ṅi = rini − ainipi,

ṗi = −sipi + binipi, i = 1, 2, (1)

where i indicates a patch and the variable ni := ni(t) is the prey population
at time t, pi := pi(t) is the predator population at time t, ri is the intrinsic
growth rate of the prey population, ai and bi are predation parameters. The
constant si is the natural mortality rate of the predator population. Aside
from the usual assumptions in Equation (1) see for instance [14], we assume
that the species of predator and prey are of the same type regardless of the
patch.

We now introduce in Equation (1) a migration, that we assume takes a
linear diffusion-like for. Equation (1) now becomes,

ṅi(t) = DN(nj(t − τ) − ni(t)) + rini(t) − aini(t)pi(t), (2)

ṗi(t) = DP (pj(t − τ) − pi(t)) − sipi(t) + bini(t)pi(t), i, j = 1, 2, i �= j,

where DN represents the prey migration rate, DP represents the predator
migration rate and τ represents a time lag in the migration of both the prey

and predator. Let zi(t) :=
(
ni(t), pi(t)

)
, i = 1, 2, and for simplicity, we

assume that DN = DP and is equal to some constant, β > 0. Thus Equation
(2) becomes,

żi(t) = β(zj(t − τ) − zi(t)) + fi(zi(t)), i, j = 1, 2, i �= j, (3)

where,

fi(zi(t)) =

(
rini(t) − aini(t)pi(t)
−sipi(t) + bini(t)pi(t)

)
. (4)

Let z(t) := (z1(t), z2(t)) and f(z(t), z(t − τ)) represent the vector field on the
right hand side of Equation (3), thus Equation (3) becomes,

ż(t) = f(z(t), z(t − τ)). (5)

Let C = C([−τ, 0], R4) be a Banach space equipped with the sup norm, ‖φ‖ =
sup |φ(θ)| ≤ r, (0 ≤ r < ∞), for θ ∈ [−τ, 0] and where |φ(θ)| denotes a
Euclidean norm of φ(θ). Let the initial condition be given by,

ϕ(t) := z(t) |[−τ,0], (6)

where ϕ ∈ C. Since f(z(t), z(t − τ)) ∈ C(R4 ×C, R4), Equation (5) subject to
Equation (6) has a unique solution. For more on existence and uniqueness of
solutions, see for instance Hale & Lunel [9].
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3 Analysis of the Model

In this section, we analyze Equation (3) using the same method as the one
used in [19],[20] where a system of coupled oscillators with a time lag in the
coupling was studied.

We wish to exploit the symmetries in the coupling terms of Equation (3);
that is,

żi(t) = β(zj(t − τ) − zi(t)), i, j = 1, 2, i �= j, (7)

We show that Equation (7) generates semiflows on two invariant manifolds. To
this end we We shall applly Laplace transform methods in complex variables
to the terms describing migration in Equation (3). To this end, an exponential
estimate of the solution of the Equation (7) should be bounded.

3.1 Exponential Boundedness

We now prove that Equation (7) is exponentially bounded.

Lemma 3.1. The solution of Equation (7) subject to the initial condition in
Equation (6) for t ≥ 0, satisfies,

|z(t)| ≤ α(τ)ebτ |ϕ|, (8)

where α(τ) = 1 + |β|τ, b = 2|β| and |.| denotes a sup norm in R4 as well as
a matrix norm.

Proof. The solution of Equation (7) subject to initial condition in Equation
(6) satisfy,

z(t) = ϕ(0) + β

∫ 0

−τ

(
0 I2

I2 0

)
ϕ(s)ds + β

∫ t

0

{(
0 I2

I2 0

)
z(s − τ) −

(
I2 0
0 I2

)
z(s)

}
ds.

(9)

Therefore,

| z(t) ≤| ϕ | +β | ϕ | τ + 2β

∫ t

0

| z(s) | ds

= (1 + βτ) | ϕ | +2

∫ t

0

β | z(s) | ds.

Since (1 + βτ)ϕ is nondecreasing, by Grownwall’s inequality,

| z(t) |≤ (1 + βτ) exp(

∫ t

0

2βds) | ϕ |
= (1 + βτ) exp(2βt)|ϕ|.
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Since Equation (7) is exponentially bounded, we will now find the characteristic
equation so that we can be able to show that Laplace Transform of Equation
(7) exists.

The Characteristic Equation of the Coupling terms, in Equation (7) is given
by,

(β + λ − βe−λτ )(β + λ + βe−λτ ) = 0. (10)

The multiplicities of the roots in Equation (10) will be doubled.

3.2 Invariant Manifold

We now show that solutions of Equation (7) define two semi-flows on two
two-dimensional invariant subspaces of R

4. Taking the Laplace transform of
Equation (7), we get

(
(−λ − β)I2 βe−λτI2

βe−λτI2 (−λ − β)I2

) (
z1(λ)
z2(λ)

)
=

(
z1(0)
z2(0)

)
, (11)

where

zi(λ) :=

∫ ∞

0

e−λtzi(t)dt

is analytic for 	λ > b. Equation (11) is symmetric in nature, on simplifying
it, adding (respectively subtracting) the set of equations involving z2(0) to
(respectively from) z1(0) in Equation (11), we obtain

(−λ − β + βe−λτ )I2(z1(λ) + z2(λ)) = z1(0) + z2(0),

(−λ − β − βe−λτ )I2(z1(λ) − z2(λ)) = z1(0) − z2(0). (12)

The matrices (−λ − β + βe−λτ )I2 and (−λ − β − βe−λτ )I2 are invertible for
	λ > b. Thus the inverse Laplace transform exits and is given by

z1(λ) + z2(λ) = (−λ − β + βe−λτ )−1I2(z1(0) + z2(0)),

z1(λ) − z2(λ) = (−λ − β − βe−λτ )−1I2(z1(0) − z2(0)). (13)

Let

Θ = {(z1(t), z2(t)), zi(t) ∈ R
2 : z1(t) − z2(t) = 0},

Π = {(z1(t), z2(t)), zi(t) ∈ R
2 : z1(t) + z2(t) = 0}. (14)

The Θ-manifold is referred to as the Synchronization Manifold while Π-manifold
is called Asymmetric. These manifolds are invariant with respect to the semi-
flow defined by (2) see [19]. To simplify the study of Equation (2) on these
manifolds, we introduce a change of coordinates defined by,

u1 :=
1

2
(n1 + n2), v1 :=

1

2
(p1 + p2), u2 :=

1

2
(n1 − n2), v2 :=

1

2
(p1 − p2). (15)
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Since the species are assumed to be of the same type, we shall assume
r1 = r2 := r, a1 = a2 := a, b1 = b2 := b, s1 = s2 := s. Using the transformation
in Equation (15) in Equation (2), we obtain,

u̇1(t) = β(u1(t − τ) − u1(t)) + ru1(t) − a(u1(t)v1(t) + u2(t)v2(t)),

v̇1(t) = β(v1(t − τ) − v1(t)) − sv1(t) + b(u1(t)v1(t) + u2(t)v2(t)).

u̇2(t) = −β(u2(t − τ) + u2(t)) + ru2(t) − a(u1(t)v2(t) + u2(t)v1(t)),

v̇2(t) = −β(v2(t − τ) + v2(t)) − sv2(t) + b(u1(t)v2(t) + u2(t)v1(t)). (16)

The linear subspace in Equation (14) becomes

Π = {(u1, v1, 0, 0) ∈ R
4 : (u1, v1) ∈ R

2},

Θ = {(0, 0, u2, v2) ∈ R
4 : (u2, v2) ∈ R

2}.
On both Θ and Π the system reduces to two dimensional systems of the form

U̇1(t) =

(
β 0
0 β

)
U1(t − τ) +

(
r − β − av1 0

0 −s − β + bu1

)
U1(t), (17)

and

U̇2(t) =

(−β 0
0 −β

)
U2(t − τ) +

(
r − β 0

0 −s − β

)
U2(t), (18)

where Ui(t) = (ui(t), vi(t)), i = 1, 2, respectively.

Next we examine the stability of solutions on the two manifolds, this will
help us predict long-term behaviours of solutions of Model (2).

3.3 Analysis of the Synchronization Manifold

Our main result in this section is Theorem 3.2

Theorem 3.2. For all s, Equation (17) has;

(i) A sink at the origin for β > r;

(ii) A saddle at the origin for β < r;

(iii) A periodic solution for β = r.

We will use Lemma 3.3 and Lemma 3.4 that can be found for instance in
[3] to prove Theorem 3.2.
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Lemma 3.3. The equation z = be−z has simple pure imaginary roots,

z = i(π/2 + 2mπ), for b = −(π/2 + 2mπ),

z = 0, for b = 0 ,

z = i(π/2 + (2m + 1)π), for b = (π/2 + (2m + 1 )π),

where m = 0, 1, 2, . . . and there are no other purely imaginary roots.

Lemma 3.4. If | b | is close to zero, equation z = be−z has no positive real
root for b < 0 and precisely one if b > 0.

Proof. Let U1(t) = eλtc1, c1 ∈ C2, be the nontrivial solution of Equation (17).
Substituting U1(t) in Equation (17), we obtain the characteristic equation,

(βe−λτ + r − β − λ)(βe−λτ − s − β − λ) = 0. (19)

If we let

z = (λ + β − r)τ. (20)

in the first factor of Equation (19),

(−βe−λτ − r + β + λ) = 0. (21)

we obtain

z = βτe−ze(−r+β)τ . (22)

From Lemma 3.3, setting b = βτe(−r+β)τ > 0, then

z = i(π/2 + (2m + 1)π) for βτe(−r+β)τ =
π

2
+ (2m + 1)π. (23)

Using Equation (20) in Equation (23) we obtain,

λ =
i(π/2 + (2m + 1)π)

τ
− (β − r). (24)

Thus Equation (21) has;

(i) Roots with negative real parts for β > r;

(ii) Roots with positive real parts for β < r and precisely one positive real
root if |βτe(β−r)τ | is close to zero;

(iii) Purely imaginary roots when β = r.
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Similarly upon applying Lemma 3.3 with z := (λ + β + s)τ in

(−βe−λτ + s + β + λ) = 0, (25)

and upon the use of Lemma 3.3, we obtain

λ =
i(π/2 + 2mπ)

τ
− (β + s) (26)

for
βτe(s+β)τ =

π

2
+ 2mπ.

All the roots of Equation (25) have negative real parts for all positive values
of β and s.

Combining the results obtained for Equation (21) and Equation (25), the
System of Equation (17) has;

(i) A sink at the origin for β > r;

(ii) A saddle at the origin for β < r;

(iii) A Periodic solution for β = r.

Hence Theorem 3.2 is proved.

3.4 Analysis of the Asymmetric Manifold

The main results in this section is Theorem 3.5.

Theorem 3.5. For all s, and βτe(−r+β)τ = π
2

+ 2mπ,m = 0, 1, . . . Equation
(18) has;

(i) A sink at the origin for β > r;

(ii) A saddle at the origin for β < r;

(iii) A periodic solution for β = r.

Proof. Let U2(t) = eλtc2, where c2 ∈ C2 is nonzero. Substituting U2(t) in
Equation (18), we obtain the following characteristic equation,

(βe−λτ − r + β + λ)(βe−λτ + s + β + λ) = 0. (27)

We will analyze the factors of Equation (27) separately and then combine the
results obtained.

Consider the first factor of Equation (27); that is,

(βe−λτ − r + β + λ) = 0. (28)
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Let
z = (λ + β − r)τ. (29)

Equation (28) becomes,
z = −βτe−ze(−r+β)τ . (30)

From Lemma 3.3, since b = −βτe(−r+β)τ < 0,

z = i(π/2 + 2mπ) for βτe(−r+β)τ =
π

2
+ 2mπ,m = 0, 1, 2, . . . . (31)

Using Equation (29) in Equation (31) we obtain,

λ =
i(π/2 + 2mπ)

τ
− (β − r). (32)

Therefore for all βτe(−r+β)τ = π
2

+ 2mπ, Equation (28)has:

(i) Roots with negative real parts when β > r;

(ii) Roots with positive real parts when β < r and precisely one positive real
root when |βτe(β−r)τ | is close to zero;

(iii) A periodic solution when β = r.

For the second factor of Equation (19); that is,

(βe−λτ + s + β + λ) = 0, (33)

let

z = (λ + β + s)τ. (34)

Using Lemma 3.3 and Equation (34), we obtain

λ =
i(π/2 + 2mπ)

τ
− (β + s) (35)

All the roots of Equation (33) have negative real parts, and thus the System
of Equation (18) is asymptotically stable.

Combining the results obtained for Equation (28) and Equation (33), Equa-
tion (18) has;

(i) A sink at the origin for β > r;

(ii) A saddle at the origin for β < r;

(iii) A periodic solution for β = r. Hence Theorem 3.5 is proved.
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4 Conclusion and Discussion

The anylsis of the Synchronization Manifold show that, regardless of the value
of the mortality rate, s, when the migration coefficient β, is less than the growth
rate of the prey, the population in one patch grows while the population in
the other patch stabilizes at zero: this means that the species will not die
out in both patches since one of the patches does not remain at zero for all
time. When the migration coefficient is greater than the prey growth rate,
the population in both patches stabilizes at zero: these two species in both
patches will die out. When the coupling term is the same as the prey growth
rate then a periodic solution occurs. The analysis of Asymmetric manifold
show that we have sink at the origin when miration coefficientm is greater
than the prey growth rate, β > r, and 0 < βτe(−r+β)τ < π/2, irrespective of
the value of the predator mortality rate, s, saddle at the origin when β < r
or βτe(−r+β)τ > π/2 irrespective of the value of the predator mortality rate, s,
and a periodic solutions when coupling term is equal to the prey growth rate
β = r.

We have considered a model where the migration rate is constant, but
the migration rate is usually dependent on the other species, i.e. the prey
migration rate should be dependent on the predator density and the predator
migration rate should be dependent on the prey density, and these migration
rates should not be the same since every species in patch i, i = 1, 2, 3 . . . has
different dynamics. Model (3) can also be extended to more than two patches.
One can also examine a logistic growth predator-prey model which incorporates
a delay in the migration of the system. One can further add another delay in
the nonlinear(interaction) part to account for the fact that a prey must attain
a certain age to be preyed on and a predator must attain a certain age to able
to hunt.
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